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Abstract  7 

In-vivo and in-situ measurement of the radiation dose administered during brachytherapy 8 

faces several technical challenges, requiring a very compact, tissue-equivalent, linear and 9 

highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use 10 

radioactive seeds with low energy and low dose deposition rate. In this work we present a 11 

scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated 12 

electronic readout system based on silicon photomultiplier photodetection, capable of 13 

operating both in pulse and current modes. The performance of the scintillating fiber optic 14 

dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 15 

40-50 kV and currents below 1 mA, to assess minimum dose response of the scintillating 16 

fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose 17 

variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter 18 

in brachytherapy, the high sensitivity of this device makes it a suitable candidate for 19 

application in low-dose rate brachytherapy. Accordingly to Peralta and Rego [1], the BCF-10 20 

and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their 21 

sensitivity for photon beams in the 25 to 100 kVp energy range. Energy linearity for energies 22 

below 50 keV needs to be further investigated, using monochromatic X-ray photons. 23 

 24 

1. Introduction  25 

1.1.   Scintillators in radiation dosimetry  26 
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The use of scintillators as detection medium is one of the most common options in radiation 27 

physics. In general, some precautions should be taken when using scintillators as radiation 28 

detectors, such as considering stem effect (including Cherenkov light) [2-7], temperature 29 

dependence and energy linearity. Organic scintillators present some advantages over 30 

inorganic ones, such as faster decay time, small temperature dependence, and energy and dose 31 

linearity. In the last decades several groups evaluated the feasibility of organic scintillators as 32 

dosimeters [6, 8-14]. However, most of those applications used high doses, high-dose rates 33 

and high-energy radiation sources [15-18]. In low-dose rate (LDR) regimes like in prostate 34 

LDR-brachytherapy, low energy radioactive sources (125I, 103Pd. 131Cs) are permanently 35 

implanted inside the tumor. The emissions of these isotopes are below the threshold energies 36 

for Cherenkov in common plastics such as polymethyl-methacrylate (PMMA) [5]. 37 

Considering the low energy and low-dose rate, only a highly sensitive dosimeter would 38 

perform properly on dose quantification in these procedures. 39 

 40 

1.2.   Dosimeters for Brachytherapy  41 

Brachytherapy is a radiation therapy modality where the radioactive sources are placed near 42 

(intracavitary) or inside (interstitial) the region to be treated. Skin, breast and prostate 43 

brachytherapy are some of the most common. The justification for in-vivo dosimetry is 44 

presented in [19]. An ideal dosimeter should present the following characteristics [17, 19-21]: 45 

- high sensitivity 46 

- no dependencies on beam parameters 47 

- real-time dose measurement 48 

- universality (ability to function with proton and electron beams) 49 

- dose-rate independence 50 

- dose linearity 51 

- temperature independence 52 



- tissue equivalence 53 

- easy to use and calibrate  54 

- detectable in the anatomic volume to allow checking its position 55 

- not expensive / disposable use of its implantable part. 56 

 57 

Ismail [9] refers that MOSFETs are a good approach to in-vivo measurements. There are 58 

some available commercial options for in-vivo and real-time dosimetry, but they can be bulky 59 

and very expensive, have a short-lifetime and are not tissue equivalent [19]. On the other hand, 60 

detectors based on scintillating optical fibers are promising systems. 61 

 62 

1.2.   Fiber optic dosimeter for prostate low-dose rate brachytherapy 63 

Brachytherapy procedures may be classified as low-dose rate (LDR) when dose is delivered at 64 

a rate below 2 Gy/hr, medium-dose rate (MDR) in the range of 2 to 12 Gy/hr and high-dose 65 

rate (HDR) when dose is delivered at 12 Gy/hr or more [22]. In prostate LDR-brachytherapy, 66 

very low dose rate permanent radioactive seeds are implanted permanently inside the prostate 67 

delivering a dose of about 150 Gy in one or more months. The typical radioactive seeds used 68 

in prostate LDR-brachytherapy are made of 125I (28.5 keV, T1/2 = 3 months), 103Pd (20.8 keV , 69 

T1/2 = 17 days) and 131Cs (30.4 keV, T1/2 = 9.7 days). Several factors may alter the dose 70 

distribution: extension of edema after therapy, edema reabsorption and isotope half-life [23]. 71 

A major concern related to prostate LDR-brachytherapy is the lesion of healthy tissues and 72 

organs, such as the urethra. A small sized dosimeter, capable of measuring in-vivo and in 73 

real-time, would allow determining the precise dose in critical regions. The ideal would be a 74 

flexible dosimeter, with a diameter smaller than 1 mm, capable of being inserted in a typical 75 

applicator seed implant needle (17 gauge) used in brachytherapy. A scintillating fiber optic 76 

coupled to a fiber optic light guide would fit these criteria, but the reduced light yield from 77 

organic scintillators in conjunction with their fast decay times, demand a fast and high gain 78 



single-photon counting photodetector, such as a photomultiplier tube (PMT) or silicon 79 

photomultiplier (SiPM). SiPMs are small-size photodetectors with an easy readout and 80 

require low bias voltages, being perfect for a portable and reliable system, as well as cost 81 

attractive. 82 

Plastic scintillators are reasonably water-equivalent for photon energies above 100 keV [9, 83 

24] but a major concern is the linearity with dose and energy in the range below 100 keV. In 84 

addition, Wooton and Beddar [25] showed that the BCF-12 scintillating fiber presents a 85 

0.13% decrease in measured dose per ºC increase. Some preliminary studies were performed. 86 

 87 

2.    Materials and methods  88 

2.1.   The developed dosimeter 89 

The developed dosimeter is composed of a sensitive probe and an electronic readout system. 90 

The dosimeter sensitive probe consists of a scintillating optical fiber coupled to a clear light 91 

guide fiber, both covered with a polyethylene jacket for ambient light isolation and 92 

mechanical resistance increase. The scintillating optical fiber is a 1 mm ø BCF12-A (Saint-93 

Gobain Crystals, France) 5 mm long, aluminized on one end by vacuum deposition, to 94 

increase the light trapping efficiency. The other end of the scintillating optical fiber is coupled 95 

to a 1 mm ø, 5 m long HFBR-R optical fiber waveguide made of PMMA (Avago 96 

Technologies, USA). The photodetector is a Hamamatsu S10362-11-100U MPPC 97 

(Hamamatsu Photonics, Japan). The developed system allows a real-time measurement and is 98 

suitable for in-vivo applications, comprising a dedicated readout system that allows both 99 

pulse and current operation modes [26]. 100 

 101 

 102 



2.2.   Methods and results 103 

To evaluate the dosimeter response in low energy regimes and under low doses, an X-ray tube 104 

was used: 1 mA, 50 kV max, 125 µm thick Be window and 25º cone angle (5000 series, 105 

Oxford Instruments, UK). 106 

A PTW 23342 ionization chamber (PTW, Germany) was positioned at 40 cm in line with the 107 

X-ray tube window inside a 15 cm squared PMMA phantom at 1 cm deep. The ionization 108 

chamber was read with a UNIDOS E universal dose meter (PTW, Germany). The PTW 109 

23342 is the reference ionization chamber recommended by the IAEA for the quality of 110 

radiation used. The ionization chamber calibration is described in [1] and followed the 111 

recommendation of TRS-398 [27] for dosimetry in X-rays beams up to 100 kVp. 112 

Dose values were measured at 40 and 50 kV tube potentials for several tube currents below 113 

1mA, with and without filtering (0.5 mm thick 99.9% Al filter). For each tube potential and 114 

current, we obtained the average value of 100 acquisitions. 115 

The setup was then changed to the dosimeter, maintaining the same configuration X-ray – 116 

ionization chamber (Fig. 1).  117 

 118 

Fig. 1 119 

 120 

The SiPM was biased at 1 V overbias and a 6487 picoammeter (Keythley, USA) was used to 121 

measure the MPPC response. The room temperature of 25 ºC was constant during the 122 

measurements. Measurements were done in the same conditions as with the ionization 123 

chamber, with results presented in Fig. 2. The uncertainty of the measurements with the 124 

ionization chamber is below 2% (standard deviation) and 2% for the scintillators’ readings. 125 

 126 



 127 

Fig. 2 128 

 129 

Making the correspondence of the ionization chamber dose measurements with the dosimeter 130 

response, for the same conditions, we can plot the dosimeter response in terms of dose (Fig. 131 

3). 132 

 133 

 134 

Fig. 3 135 

 136 

The scintillating fiber optic dosimeter shows a linear response and is capable of detecting 137 

dose variations below 5 mGy. Some authors reported possible non-linearity of plastic 138 

scintillator at energies below 200 keV [6, 10, 24, 28]. In that sense, a wide energy range study 139 

is needed to verify energy linearity of the developed system. The small variation in the 140 

measured dose with the temperature reported by Wooton and Beddar [25] may not be an issue 141 

if we consider a constant internal body temperature, although it is an aspect deserving 142 

attention, considering the envisaged clinical application. In a prostate brachytherapy, several 143 

needles (40 to 60) are introduced in the prostate for the radioactive seed deposition, so this 144 

could lead to a temperature increase in the region. 145 

 146 

 147 

3.   Conclusion 148 



The developed system revealed a high sensitivity, capable of detecting mGy doses like the 149 

ionization chamber. The dosimeter response is linear at different X-ray tube potentials in a 150 

wide range of X-ray dose rates, from 2 to 70 Gy/hr. This is a major aspect, since the regimes 151 

of low-dose rate brachytherapy are characterized by low-dose rates (< 2 Gy/hr) and low 152 

energies (< 50 keV) requiring a highly sensitive device to properly perform dosimetry and 153 

quality assurance. In addition to the mathematical dose calculation formalism [14], the 154 

complexity of radiotherapy quality assurance is increased by several other factors required in 155 

a dosimeter, such as tissue equivalence, no disturbance to the radiation field, temperature and 156 

energy independence, etc. When the goal is to do in-vivo dosimetry in situations such as 157 

prostate low-dose rate brachytherapy, a small sized and flexible dosimeter is mandatory. Our 158 

results validate this type of dosimeter and reveal that it is possible to properly measure dose in 159 

such regimes, although the energy linearity at energies below 50 keV should be further 160 

investigated, using monochromatic X-ray photons. 161 
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Figure captions 245 

 246 

Fig. 1. Experimental setup: sensitive probe, comprising a 1 mm diameter BCF-12 scintillating 247 

fiber optic positioned at 40 cm in line with the X-ray tube window inside a 15 cm squared 248 

PMMA phantom and at 1cm deep. 249 

 250 

Fig. 2. Dosimeter current mode response for 40 and 50 kV tube potentials and currents below 251 

1 mA with and without Al filter. Uncertainties below 2%. 252 

 253 

Fig. 3. Dosimeter response with dose. Uncertainties below 2%. 254 

 255 
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